PUBLICATIONS

Co-authors, 2018. The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. Journal of Advances in Modeling Earth Systems, under review.

 

Van Roekel, L., Adcroft, A.J., Danabasoglu, G., Griffies, S.M., Kauffman, B., Large, W., Levy, M., Reichl, B.G., Ringler, T. and Schmidt, M., 2018. The KPP Boundary Layer Scheme for the Ocean: Revisiting Its Formulation and Benchmarking One‐Dimensional Simulations Relative to LES. Journal of Advances in Modeling Earth Systems, 10(11), pp.2647-2685.

Roberts, M.J., P.L. Vidale, C. Senior, H. Hewitt, C. Bates, S. Berthou, P. Chang, H.M. Christensen, S. Danilov, M. Demory, S.M. Griffies, R. Haarsma, T. Jung, G. Martin, S. Minobe, T. Ringler, M. Satoh, R. Schiemann, E. Scoccimarro, G. Stephens, and M.F. Wehner, 2018: The benefits of global high-resolution for climate simulation: process-understanding and the enabling of stakeholder decisions at the regional scale.. Bull. Amer. Meteor. Soc., https://doi.org/10.1175/BAMS-D-15-00320.1 

 

Wolfram, P.J. and Ringler, T.D., 2017. Computing eddy-driven effective diffusivity using Lagrangian particles. Ocean Modelling, 118, pp.94-106.

 

Wolfram, P.J. and Ringler, T.D., 2017. Quantifying residual, eddy, and mean flow effects on mixing in an idealized circumpolar current. Journal of Physical Oceanography, 47(8), pp.1897-1920.

 

Ringler, T., Saenz, J. A., Wolfram, P. J., & Roekel, L. V. (2017). A thickness-weighted average perspective of force balance in an idealized circumpolar current. Journal of Physical Oceanography, 47(2), 285-302.

 

Saenz, J.A., Chen, Q. and Ringler, T., 2015. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow. Journal of Physical Oceanography, 45(9), pp.2247-2260.

 

Wolfram, P.J., Ringler, T.D., Maltrud, M.E., Jacobsen, D.W. and Petersen, M.R., 2015. Diagnosing isopycnal diffusivity in an eddying, idealized midlatitude ocean basin via Lagrangian, in Situ, Global, High-Performance Particle Tracking (LIGHT). Journal of Physical Oceanography, 45(8), pp.2114-2133.

 

Petersen, M. R., Jacobsen, D. W., Ringler, T. ~., & Hecht, M. W. (2015). Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model. Ocean Modelling.

 

Rauscher, S. A., & Ringler, T. D. (2014). Impact of Variable-Resolution Meshes on Midlatitude Baroclinic Eddies Using CAM-MPAS-A. Dx.Doi.org, 142(11), 4256–4268.

 

Yang, Q., Leung, L. R., Rauscher, S. A., Ringler, T. D., & Taylor, M. A. (2014). Atmospheric Moisture Budget and Spatial Resolution Dependence of Precipitation Extremes in Aquaplanet Simulations. Journal of Climate, 27(10), 3565–3581.

 

Landu, K., Leung, L. R., Hagos, S., Vinoj, V., Rauscher, S. A., Ringler, T., & Taylor, M. (2014). The Dependence of ITCZ Structure on Model Resolution and Dynamical Core in Aquaplanet Simulations. Dx.Doi.org, 27(6), 2375–2385. http://doi.org/10.1175/JCLI-D-13-00269.1

 

Womeldorff, G., Peterson, J., Gunzburger, M., & Ringler, T. (2013). Unified Matching Grids for Multidomain Multiphysics Simulations. Dx.Doi.org, 35(6), A2781–A2806.

 

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013). Ocean Modelling. Ocean Modelling, 69(C), 211–232.

 

Hagos, S., Leung, R., Rauscher, S. A., & Ringler, T. (2013). Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF. Dx.Doi.org, 141(9), 3022–3036.

 

Leung, L. R., Ringler, T., Collins, W. D., Taylor, M., & Ashfaq, M. (2013). A Hierarchical Evaluation of Regional Climate Simulations. Eos, Transactions American Geophysical Union, 94(34), 297–298.

 

Rauscher, S. A., Ringler, T. D., Skamarock, W. C., & Mirin, A. A. (2013). Exploring a Global Multiresolution Modeling Approach Using Aquaplanet Simulations. Journal of Climate, 26(8), 2432–2452.

 

Chen, Q., Ringler, T., & Gunzburger, M. (2013). A co-volume scheme for the rotating shallow water equations on conforming non-orthogonal grids. Journal of Computational Physics, 240, 174–197.

 

Graham, J. P., & Ringler, T. (2013). A framework for the evaluation of turbulence closures used in mesoscale ocean large-eddy simulations. Ocean Modelling.

 

Leung, R., Rauscher, S. A., & Ringler, T. (2013). Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF. Monthly Weather …, 141(9), 3022–3036. 

 

Jiang, X., Rauscher, S. A., Ringler, T. D., Lawrence, D. M., Williams, A. P., Allen, C. D., et al. (2012). Projected Future Changes in Vegetation in Western North America in the 21 stCentury. Journal of Climate.

 

Chen, Q., Gunzburger, M., & Ringler, T. (2012). A Scale-Aware Anticipated Potential Vorticity Method: On Variable-Resolution Meshes. Monthly Weather Review, 140, 3127–3133.

 

Leng, W., Ju, L., Gunzburger, M., Price, S., & Ringler, T. (2012). A parallel high‐order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments. Journal of Geophysical Research: Oceans (1978--2012), 117(F1).

 

Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S. H., & Ringler, T. ~. (2012). A multi-scale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Monthly Weather Review, 140, 3090–3105.

 

Ringler, T. D., Jacobsen, D., Gunzburger, M., Ju, L., Duda, M., & Skamarock, W. (2011). Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations. Monthly Weather Review, 139(11), 3348–3368. 

 

Zhang, H., Ju, L., Gunzburger, M., Ringler, T. & Price, S. (2011). Coupled models and parallel simulations for three-dimensional full-Stokes ice sheet modeling. … Theory.

 

Chen, Q., Gunzburger, M., & Ringler, T. (2011). A scale-invariant formulation of the anticipated potential vorticity method. Monthly Weather Review, 139, 2614–2629.

 

Ringler, T. (2011). Momentum, vorticity and transport: Considerations in the design of a finite-volume dynamical core. Numerical Techniques for Global Atmospheric Models, Springer  Lecture Notes in Computational Science and Engineering, Eds. P. H. Lauritzen, C. Jablonowski, M. a. Taylor and R. D. Nair.

 

Ju, L., Gunzburger, M. & Ringler, T.  (2010). Voronoi Tessellations and their Application to Climate and Global Modeling. Numerical Techniques for Global Atmospheric Models, Springer Lecture Notes in Computational Science and Engineering, Eds. P. H. Lauritzen, C. Jablonowski, M. a. Taylor and R. D. Nair, 1–30.

 

Ringler, T., & Gent, P. (2011). An eddy closure for potential vorticity. Ocean Modelling, 39, 125–134. 

 

Ringler, T., Thuburn, J., Klemp, J., & Skamarock, W. (2010). A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids. Journal of Computational Physics, 229(9), 3065–3090.

 

Weller, H., Ringler, T., Piggott, M., & Wood, N. (2010). Challenges facing adaptive mesh modeling of the atmosphere and ocean. Bulletin of the American Meteorological Society, 91(1), 105–108.

 

Thuburn, J., Ringler, T., Skamarock, W., & Klemp, J. (2009). Numerical representation of geostrophic modes on arbitrarily structured C-grids. Journal of Computational Physics, 228(22), 8321–8335.

 

Ringler, T., Ju, L., & Gunzburger, M. (2008). A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dynamics, 58(5-6), 475–498.

 

Zupanski, M., Fletcher, S. J., Navon, I. M., Uzunoglu, B., Heikes, R. P., Randall, D. A., et al. (2006). Initiation of ensemble data assimilation. Tellus A, 58(2), 159–170.

 

Bonaventura, L. & Ringler, T. (2005). Analysis of discrete shallow-water models on geodesic Delaunay grids with C-type staggering. Monthly Weather Review, 133(8), 2351–2373.

 

Lipscomb, W., & Ringler, T. (2005). An incremental remapping transport scheme on a spherical geodesic grid. Monthly Weather Review, 133(8), 2335–2350.

 

Randall, D. A., Ringler, T. ~., Heikes, R. P., & Baumgardner, J. (2002). Climate modeling with spherical geodesic grids. Computing in Science & Engineering, 4(5), 32–41.

 

Ringler, T., & Randall, D. (2002). A potential enstrophy and energy conserving numerical scheme for solution of the shallow-water equations on a geodesic grid. Monthly Weather Review, 130(5), 1397–1410.

 

Ringler, T., & Randall, D. (2002). The ZM grid: An alternative to the Z grid. Monthly Weather Review, 130(5), 1411–1422.

 

Ringler, T. (2000). Modeling the Atmospheric General Circulation Using a Spherical Geodesic Grid: A New Class of Dynamical Cores. Monthly Weather Review, 128(7), 2471–2490.

 

Ringler, T. ~., & Cook, K. H. (1999). Understanding the seasonality of orographically forced stationary waves: Interaction between mechanical and thermal forcing. Journal of the Atmospheric Sciences, 56(9), 1154–1174.

 

Ringler, T. D., & Cook, K. (1997). Factors Controlling Nonlinearity in Mechanically Forced Stationary Waves over Orography. Journal of the Atmospheric Sciences.

 

Lenters, J. D., Cook, K. H., & Ringler, T. ~. (1995). Comments on“ On the Influence of the Andes on the General Circulation of the Southern Hemisphere.” Journal of Climate, 8(8), 2113–2115.

 

Ringler, T., and K. H. Cook, 1995: Orographically induced stationary waves: Dependence on latitude. J. Atmos. Sci., 52, 2548–2560 

 

Ringler, T.D., 1992. The directionality of blade-vortex interaction noise. Cornell University, August.

 

  • Twitter Clean Grey
  • LinkedIn Clean Grey